The mechanics of the gibbon foot and its potential for elastic energy storage during bipedalism.

نویسندگان

  • Evie E Vereecke
  • Peter Aerts
چکیده

The mechanics of the modern human foot and its specialization for habitual bipedalism are well understood. The windlass mechanism gives it the required stability for propulsion generation, and flattening of the arch and stretching of the plantar aponeurosis leads to energy saving. What is less well understood is how an essentially flat and mobile foot, as found in protohominins and extant apes, functions during bipedalism. This study evaluates the hypothesis that an energy-saving mechanism, by stretch and recoil of plantar connective tissues, is present in the mobile gibbon foot and provides a two-dimensional analysis of the internal joint mechanics of the foot during spontaneous bipedalism of gibbons using a four-link segment foot model. Available force and pressure data are combined with detailed foot kinematics, recorded with a high-speed camera at 250 Hz, to calculate the external joint moments at the metatarsophalangeal (MP), tarsometatarsal (TM) and talocrural (TC) joints. In addition, instantaneous joint powers are estimated to obtain insight into the propulsion-generating capacities of the internal foot joints. It is found that, next to a wide range of motion at the TC joint, substantial motion is observed at the TM and MP joint, underlining the importance of using a multi-segment foot model in primate gait analyses. More importantly, however, this study shows that although a compliant foot is less mechanically effective for push-off than a ;rigid' arched foot, it can contribute to the generation of propulsion in bipedal locomotion via stretch and recoil of the plantarflexor tendons and plantar ligaments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of hind limb tendons in gibbon locomotion: springs or strings?

Tendon properties have an important effect on the mechanical behaviour of muscles, with compliant tendons allowing near-isometric muscle contraction and facilitating elastic energy storage and recoil. Stiff tendons, in contrast, facilitate rapid force transfer and precise positional control. In humans, the long Achilles tendon contributes to the mechanical efficiency of running via elastic ener...

متن کامل

Three-dimensional kinematics of capuchin monkey bipedalism.

Capuchin monkeys are known to use bipedalism when transporting food items and tools. The bipedal gait of two capuchin monkeys in the laboratory was studied with three-dimensional kinematics. Capuchins progress bipedally with a bent-hip, bent-knee gait. The knee collapses into flexion during stance and the hip drops in height. The knee is also highly flexed during swing to allow the foot which i...

متن کامل

The dynamics of hylobatid bipedalism: evidence for an energy-saving mechanism?

When gibbons travel through the forest canopy, brachiation is alternated with short bipedal bouts over horizontal boughs. We know, from previous research, that brachiation is a very efficient locomotor mode that makes use of a pendulum-like exchange of energy, but to date, nothing is known about the dynamics of hylobatid bipedalism. We wondered if gibbons also make use of an efficient gait mech...

متن کامل

Evaluation of Peak Shifting and Energy Saving Potential of Ice Storage Based Air Conditioning Systems in Iran

Thermal energy storage (TES) system has been introduced as a practical facility for shifting load from peak hours to off-peak hours. Because of different energy consumption during day and night, peak and off peak period is created on load curve. Ice storage technology which is a kind of TES system, is implemented in different points of the world with the purpose of solving load shifting problem...

متن کامل

Effects of rehabilitation period with elastic training on frequency spectrum of foot forces in females with low back pain

 Aims and background:  The aim of this study was to investigate the effects of rehabilitation period with elastic training on frequency spectrum of foot forces in females with low back pain during walking. Materials and methods: The sample of this study included 20 girls with low back pain.The experimental group did elastic gait training for 6 weeks. Peak plantar forces during both pre and post...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 211 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2008